Science Applications International Corporation

2182W_Midas_Ruthette_08/22/02_9:30 PM
Office of Child Support Enforcement


Appendix 9. Amount of Support Ordered Pseudocode

Step 1. Convert all payments to monthly values. Because support orders can be paid over a wide range of time periods, it is necessary to select one time measurement so that all orders can be compared accurately. For the purpose of this example, a business year of 360 days is used.

	Input Fields Required
	Output Fields Created / Modified

	

	

	NCP_Data.Case-ID

NCP_Data.Order-Frequency

NCP_Data.Amount_of_Support_Ordered

NCP_Data.Billing_Status
	Support.Case-ID

Temp.Order-Frequency

Temp. Amount_of_Support_Ordered

Support.TMonthly_Amount

Support.Billing_Status

Support.Date_Modified

	Pseudocode
	Reason

	SELECT

NCP_Data.Case_ID, 

NCP_Data.[Order-Frequency],

NCP_Data.Amount_of_Support_Ordered

FROM NCP_Data;

For Each NCP_Data DO

Case Select of NCP_Data[Order-Frequency] 

“A”: Support.TMonthly_Amount = 

INT(NCP_Data.Amount_of_Support_Ordered/12)

“B”: Support.TMonthly_Amount =

INT((NCP_Data.Amount_of_Support_Ordered/14)*30)

“E”: Support.TMonthly_Amount =

INT(NCP_Data.Amount_of_Support_Ordered/6)

“Q”: Support.TMonthly_Amount =

INT(NCP_Data.Amount_of_Support_Ordered/3)

“M”: Support.TMonthly_Amount =

INT(NCP_Data.Amount_of_Support_Ordered)

“S”: Support.TMonthly_Amount =

INT(NCP_Data.Amount_of_Support_Ordered*2)

“W”: Support.TMonthly_Amount =

INT((NCP_Data.Amount_of_Support_Ordered/7)*30)

OTHER : Writeln(ErrorLog, “Order Frequency out of range. Case ID: “,NCP_Data.Case-ID, “ Frequency: “,NCP_Data.[Order-Frequency])

Next Record

END Case

Support.Case-ID = NCP_Data.Case-ID

Temp.Order-Frequency = NCP_Data.[Order-Frequency]

DNCP_Data.Order-Freq-Amount = NCP_Data.Amount_of_Support_Ordered

Support.Billing_Status = NCP_Data.Billing_Status

Support.Date_Modified = NOW()

Next Record

Done
	Square brackets [ ] around field name act as quotation marks, otherwise the hyphen in the field name would be interpreted as a minus sign.

A = Annually; divide amount by 12 and return the integer value

B = Biweekly; divide by 14, then multiply the result by 30 and return the integer value

E = Semiannually; divide by 6 and return the integer value

Q = Quarterly; divide by 3 and return the integer value

M = Monthly; return the integer value

S = Semimonthly; multiply by 2 and return integer value

W = Weekly; divide biweekly by 7, then multiply the result by 30 and return the integer value

If Frequency is outside range, make error log entry.

Break out and return to top of loop.

Update Support Record.

Loop until all records have been acted on.


Example

Input

	Case_ID
	Order-Frequency
	Order-Freq-Amount
	Billing_Status

	

	

	45446
	Monthly
	$129.50
	Current

	45447
	Quarterly
	$150.83
	Current

	45456
	Weekly
	$42.50
	Delinquent

	45457
	Biweekly
	$196.00
	Enforcement


Output

	Case_ID
	Date_Modified
	Order-Frequency
	Amount
	Monthly
	Status

	

	

	45446
	6/11/2002 1:26:56 PM
	Monthly
	$129.50
	$130.00
	Current

	45447
	6/11/2002 1:26:56 PM
	Quarterly
	$150.83
	$50.00
	Current

	45456
	6/11/2002 1:26:56 PM
	Weekly
	$42.50
	$182.00
	Delinquent

	45457
	6/11/2002 1:26:56 PM
	Biweekly
	$196.00
	$420.00
	Enforcement


Step 2. Determine range of payment amounts and number of NCPs for each amount. 

	Input Fields Required
	Output Fields Created / Modified

	

	

	Support.TMonthly_Amount
	Report

	Pseudocode
	Reason

	SELECT 

Support.TMonthly_Amount, Count(Support.TMonthly_Amount) AS CountOfMonthly_Amount

FROM Support;

GROUP BY Support.TMonthly_Amount;
	Same as for NCP Age Count


Example

Input

	Monthly_Amount

	

	

	$50.00

	$182.00

	$420.00

	$130.00


Output

	Monthly_Amount
	CountOfMonthly_Amount

	

	

	$50.00
	1

	$130.00
	1

	$182.00
	1

	$420.00
	1


After this report is generated, a determination must be made on how to distribute the count of amounts across the entire NCP population. As with the NCP_Age distributions, low values of monthly amounts with a corresponding low number of NCPs paying the amounts might be considered outriders. The same is true for the high end of the distribution. The goal is to distribute the amounts in a manner that will yield meaningful, actionable discriminators.

NOTE: The activities performed before this point are necessary to develop the design of the data mart. The steps that follow normally occur in the ETL process. They are included here to maintain the flow of the discussion.

Step 3. Code Support.TAmount_Code based on distribution plan developed.

	Input Fields Required
	Output Fields Created/Modified

	

	

	Support.Case-ID

Support.TMonthly_Amount

Support.Date_Modified
	Support.TAmount_Code

Support.Date_Modified

	Pseudocode
	Reason

	SELECT

Support.Case-ID,

Support.TMonthly_Amount, Support.Date_Modified,

FROM Support;

For Each Support, DO

Case Select Support.TMonthly_Amount of

1..100: Support.TAmount_Code = 100

101..200: Support.TAmount_Code = 200

201..300: Support.TAmount_Code = 300

301..400: Support.TAmount_Code = 400

401..500: Support.TAmount_Code = 500

501..600: Support.TAmount_Code = 600

601..700: Support.TAmount_Code = 700

701..800: Support.TAmount_Code = 800

801..900: Support.TAmount_Code = 900

901..1000: Support.TAmount_Code = 1000

Other: Writeln(ErrorLog, ”Monthly Amount not within specified ranges. Case ID: “, Support.Case-ID, “ Amount: “Support.TMonthly_Amount)

Next Record

End Case

Support.Date_Modified = Now()

Next Record
	The dividing points and the code were arbitrarily chosen. The code 100 could just as easily represent values from 51 to 151. Numeric codes were chosen because they reflect the content of the data more accurately.

Break out and return to top of loop.

Continue to loop back to the program until all records have been processed.


Example

Input

	Case_ID
	Date_Modified
	Monthly_Amount

	

	

	45447
	6/11/2002 1:26:56 PM
	$50.00

	45446
	6/11/2002 1:26:56 PM
	$130.00

	45456
	6/11/2002 1:26:56 PM
	$182.00

	45457
	6/11/2002 1:26:56 PM
	$420.00


Output

	Case_ID
	Monthly_Amount
	Amount_Code
	Date_Modified

	

	

	45447
	$50.00
	100
	6/11/2002 3:33:21 PM

	45446
	$130.00
	200
	6/11/2002 3:33:21 PM

	45456
	$182.00
	200
	6/11/2002 3:33:21 PM

	45457
	$420.00
	500
	6/11/2002 3:33:21 PM


Step 4. Distribute Order Amount based on billing status and amount code. This process is fully within the data mart proper and represents the first pieces of information retrieved from it. There are at least three ways to design this step. Each has its advantages and disadvantages.

	Methods for Developing Order Amount Table

	

	

	Method
	Advantages
	Disadvantages

	Dynamic—The table is generated and connected to the dimension tables when query is executed.
	Information presented is most up-to-date information available.
	High system load. Actual value depends on the number of records that have to be acted on.

More complex to develop.

Higher-order tools required.

	Aggregation Record
	Faster response.

Less complex.

Lower-order tools can be used.
	Data reloaded on a scheduled basis and so is not necessarily the most current.

Moderate system load, but usually performed in off-peak hours.

Less flexibility.

Ranges embedded with field names.

	Example: Code_100_total_Count, Code_100_Paying, Code_100_Non-paying,… Code_N_total_Count, Code_N_Paying, Code_N_Non-paying

	Summary Records
	Faster response.

Simple structure.

Highly flexible.

Lowest-order tools can be used
	Data reloaded on a scheduled basis and so is not necessarily the most current.

Moderate system load, but usually performed in off-peak hours.

Repeated read-writes can be eliminated through the use of arrays for a minor increase in complexity.

	Example: Code_ID (value stored within the field), Total_Count, Paying_Count, Non_Paying_Count.

1 record for each code amount.


The final portion of pseudocode for this process will be developed using the Summary Records Model.

Step 5. Load Summary Records

	Input Fields Required
	Output Fields Created/Modified

	

	

	Support.Case-ID

Support.TAmount_Code

Support.Billing_Status
	DNCP_Amount_Ordered_Summary.Code

DNCP_Amount_Ordered_Summary.Total_Count

DNCP_Amount_Ordered_Summary.Paying_Count

DNCP_Amount_Ordered_Summary.Non_Paying_Count

DNCP_Amount_Ordered_Summary.Date_Created

DNCP_Amount_Ordered_Summary.Date_Modified

	Pseudocode (Comments Follow the “//”)

	Delete existing DNCP_Amount_Ordered_Summary Records // Ensure no false counts happen. Start with clean slate.

Establish Array[1..N] of Summary_Record Type // Summary record type is a mirror image of DNCP_Amount_Ordered_Summary. An array is created in order to reduce the number of read / writes to the hard disk. After all of the Support records are read the array will be written out to DNCP_Amount_Ordered_Summary records. N represents the total number of Amount Codes previously created. In our example this will be 10.
ArrayTop = N*100 // This is a check value that prevents the program from trying to access a non-existent array value. There are many static ways and dynamic functions available in various products to achieve the same result. This is the most rudimentary method and is included here to serve as a reminder to always protect the array boundaries.
ArrayBottom = 1 //Same purpose as ArrayTop, protects lower boundary of array.
Initialize all values in Summary_Record Array to 0 // Set all counters in array to known value.
For I = 1 to N

Summary_Record[I].Code = I * 100 // Initialize the values in the Code field for each iteration of the array. Note the use of mathematical functions to establish array element values. Because the amount codes in this example range from 100 to 1,000 in increments of 100, it requires simple math operations to place values into the array and calculate the correct array index. More complex amount codes will require additional manipulation to implement this indexing method.
Next I

Select Support

For Each Support DO

IF Support.TAmount_Code > ArrayTop then

Writeln(ErrorLog, “Amount Code higher than expected. Case ID: “, DNCP_Case_ID, “ Amount_Code: “, Support_Amount_Code) //Amount code exceeds ArrayTop value
Next Record //Break out and return to top of loop

IF Support.TAmount_Code < ArrayBottom then

Writeln(ErrorLog, “Amount Code lower than expected. Case ID: “, DNCP_Case_ID, “ Amount_Code: “, Support_Amount_Code) // Amount code less than ArrayBottom value
Next Record // Break out and return to top of loop
Summary_Record[Support.TAmount_Code/100].count = Summary_Record[Support.TAmount_Code/100].count + 1 // Using the value in Amount_Code to select the index in the Summary_Record Array. For example an Amount_Code of 100 would evaluate to 1.
IF Support.Billing_Status = “Current” then

 Summary_Record[Support.TAmount_Code/100].Paying_count = 
 Summary_Record[Support.TAmount_Code/100].Paying_count + 1

Else// If Billing_Status is equal to “Current” then increment the paying count, else increment the nonpaying count.
 Summary_Record[Support.TAmount_Code/100].Non_Paying_count = 
 Summary_Record[Support.TAmount_Code/100].Non_Paying_count + 1

Next Record // Return to the top of the loop and process the next record. Repeat until all Support records have be processed.

For I = 1 to N \\ Write the results out to the Amount_Ordered_Summary Table
DNCP_Amount_Ordered_Summary.Code = Summary_Record[I].Code

DNCP_Amount_Ordered_Summary.Total_count = Summary_Record[I].count

DNCP_Amount_Ordered_Summary.Paying_Count = Summary_Record[I].Paying_count

DNCP_Amount_Ordered_Summary.Non_Paying_Count = Summary_Record[I].Non_Paying_count

DNCP_Amount_Ordered_Summary.Date_Created = Now()

DNCP_Amount_Ordered_Summary.Date_Modified = Now()

NEXT N

DONE


The Results

	Amount of Support Ordered

	

	

	Non_paying
	66
	112
	144
	146
	150
	121
	250
	200
	90
	60

	Paying
	101
	212
	313
	356
	195
	112
	150
	100
	60
	40

	Total
	167
	324
	457
	502
	345
	233
	400
	300
	150
	100

	Amount
	$100
	$200
	$300
	$400
	$500
	$600
	$700
	$800
	$900
	$1,000


Section Name 
1
DTRA01-00-R-0021

Use or disclosure of information contained on this sheet is subject to the restrictions on the title page of this proposal or quotation.


Appendix 9: Amount of Support Ordered Pseudocode


1

